All Electric Subsea Production
System Optimization and Digitization

Rory MacKenzie
Deep Offshore R&D Program
Subsea Electrical Technologies
STIMULUS FOR ALL ELECTRIC SYSTEMS

- Reduced Environmental Impact
- Frontier Deepwater and ultra long step-outs
- Cost reduction of Deepwater developments
- Simplify future field extensions
- Enable Subsea Processing
- Improve Safety (topside)
- Improve long term reliability and Digitization
AE SUBSEA PRODUCTION SYSTEM – KEY BENEFITS

HSE
- Removal of hydraulic fluid
- Supply, transportation, storage
- Spillage, contamination, subsea intervention
- Removal of high pressure storage
- Reduced carbon footprint

CAPEX/Installation/OPEX
- Removal of hydraulic infrastructure and fluid cost
- Reduced size and weight of subsea structures
- Reduced field expansion requirements
- Improved predictive maintenance

Functionality
- Control, Speed, Feedback, Condition Monitoring
- Hybrid options – eDHSV and eChokes on conventional EH systems
- Frontier deep water, ultra long offset, subsea processing

Reliability/Availability
- Technology transfer – Medical, Aeronautics, Defense, Automotive
- Improved redundancy options
- Simpler control system
- Realtime health checks
Valve control - EH

- **Valve Open**: Spring force is balanced by hydraulic pressure.
- **Pinch close**: Hydraulic pressure increases, overcoming the spring force.
- **Valve close**: Further increase in hydraulic pressure closes the valve.

Graphs:
- **Hydraulic Pressure**:
 - Crack open: Hydraulic pressure remains constant.
 - Valve Open: Pressure increases gradually.
 - Valve close: Pressure increases sharply.

- **Torque**:
 - + Hyd - Bore - SF: Torque increases gradually.
 - + Bore – Hyd - SF: Torque decreases gradually.

- **Spring**
- **Force (kN)**
 - Closing force: Force decreases with stem travel.
 - Counter force: Force increases with stem travel.

Diagram:
- Components: Piston, ROV stem, Spring, Seal friction, Production bore, Actuator body.
Valve Control - AE

Crack open

Torque

+ Hyd - Bore - SF

Valve Open

Pinch close

+ Bore – Hyd - SF

Valve close

Time

Subsea & Drilling Brazil Conference – Nov 2019
AES – Current actuator Technology

<table>
<thead>
<tr>
<th>Project</th>
<th>Units</th>
<th>Year</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statfjord</td>
<td>16</td>
<td>2001</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Elwis</td>
<td>5</td>
<td>2002</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Orman Lange</td>
<td>5</td>
<td>2004</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Aasgard</td>
<td>2</td>
<td>2006</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Norne</td>
<td>21</td>
<td>2006</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Pluto</td>
<td>1</td>
<td>2008</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Albacora</td>
<td>21</td>
<td>2008</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>K5F1/2</td>
<td>14</td>
<td>2008</td>
<td>XT - Valves & Choke</td>
</tr>
<tr>
<td>Gjoa</td>
<td>6</td>
<td>2007</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Norne</td>
<td>2</td>
<td>2009</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Roncador</td>
<td>6</td>
<td>2010</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Smorbukk</td>
<td>2</td>
<td>2011</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Vigidis</td>
<td>2</td>
<td>2011</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Aasgard</td>
<td>80</td>
<td>2014</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>K5F3</td>
<td>8</td>
<td>2016</td>
<td>XT - Valves/Choke/DHSV</td>
</tr>
<tr>
<td>Johan Sverdrup</td>
<td>43</td>
<td>2017</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Trestakk</td>
<td>6</td>
<td>2017</td>
<td>Valve actuation</td>
</tr>
<tr>
<td>Reported orders</td>
<td>100+</td>
<td>2018+</td>
<td>Mainly Valve actuation</td>
</tr>
</tbody>
</table>

- Direct drive (AC or DC – High Power)
- Battery assisted (Low Power – 24V)
- Fail-As-Is
- Spring Fail-Safe
- Electrical Fail-Safe (No Spring)
- ROV Retrievable
- Integrated
- >10 Million hours fault free operation
K5F All ELECTRIC subsea production system

- Development & Qualification launched in 2005
- E-XT manufacture and test completed 2008
- **Phase 1** deployed in May 2008
 - Hydraulic DHSV
 - Electric Actuator reliability – 100% to date
 - Power distribution/Hydraulic system failures experienced
- **Phase 2** development launched in Nov. 2013
 - Deployed July 2016
 - Business driven decision to include electrical e-DHSV to address hydraulic leak issues July 2014
 - System design improvements implemented
AES Lessons Learnt and Opportunities

Lessons Learnt

- Electric Actuator reliability
 - Zero failures
 - No degradation identified
- Condition monitoring
 - Operation validation
 - Identification of failures
 - Long term trend analysis
- Improved valve control
 - Partial stroke
 - Adaptable valve speed/Torque
- Power distribution failures
 - Connector insulation breakdown
 - Improved electrical isolation

Future Opportunities

- Reduce cost and improve reliability
- Subsea power storage
 - Simplify power distribution system
 - Remove springs
 - Reduce power requirement
 - Reduce size/weight of XT’s and Manifolds
- Minimize complexity
 - Simplify redundancy philosophy
 - Challenge design margins
 - Challenge valve timing requirements
 - Improved XT and Manifold designs
 - Improve reliability
Electric Actuator Development JIP’s

Key development objectives:

- Reduce cost of Subsea Production Systems
- Minimize system complexity
 - Improve reliability and increase production availability
- Improve functionality
 - Better condition monitoring, operation validation and control
- Improve Safety and Environmental impact
- Industry readiness by 2021

❖ TechnipFMC JIP Launched in July 2018
❖ Aker Solutions JIP Launched in July 2018
❖ OneSubsea JIP – Proposal under negotiation
❖ Baker Hughes JIP Launched in 2018
❖ Wittenstein JIP – Launched in Oct 2019
❖ Reliability studies for Spring vs Battery fail safe designs
❖ Potential ANP Levy JIP’s in Brazil being progressed
❖ Development of industry standard AE specifications
All Electric – Joint Operator Specification

• **Target:**
 - Industry standardization by development of industry aligned specification for Subsea All-Electric technology
 - Utilizing existing regulations, requirements & interfaces as a framework
 - Integrating the SPS suppliers into the review cycle
 - Completion targeted within 2019
 - API 17F & API 17D implementation

• **Recommended Publications:**
 - IOGP to administrate document until next revision of API 17F
THANK YOU FOR YOUR ATTENTION

Questions
DISCLAIMER AND COPYRIGHT RESERVATION

The TOTAL GROUP is defined as TOTAL S.A. and its affiliates and shall include the party making the presentation.

Disclaimer
This presentation may include forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995 with respect to the financial condition, results of operations, business, strategy and plans of Total that are subject to risk factors and uncertainties caused by changes in, without limitation, technological development and innovation, supply sources, legal framework, market conditions, political or economic events. Total does not assume any obligation to update publicly any forward-looking statement, whether as a result of new information, future events or otherwise. Further information on factors which could affect the company’s financial results is provided in documents filed by the Group with the French Autorité des Marchés Financiers and the US Securities and Exchange Commission. Accordingly, no reliance may be placed on the accuracy or correctness of any such statements.

Copyright
All rights are reserved and all material in this presentation may not be reproduced without the express written permission of the Total Group.